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Electron transport in a ferromagnet-superconductor junction on graphene
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In a usual ferromagnet connected with a superconductor, the exchange potential suppresses the supercon-
ducting pairing correlation. We show that this common knowledge does not hold in a ferromagnet-
superconductor junction on a graphene. When the chemical potential of a graphene is close to the conical point
of energy dispersion, the exchange potential rather assists the charge transport through a junction interface. The
loose-bottomed electric structure causes this unusual effect.
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I. INTRODUCTION

A long time ago Fulde-Ferrell' and Larkin-Ovchinnikov?
have showed that superconducting order parameter becomes
inhomogeneous under the action of an exchange potential.
Such a superconducting state is called Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state and is currently a hot topic in
condensed matter physics. A spin-singlet Cooper pair con-
sists of two electrons with momenta k and —k on the Fermi
surface. The exchange potential shifts such momenta to k
+¢q/2 and —k+¢q/2 due to Zeeman effect. As a consequence,
a Cooper pair acquires a center-of-mass momentum ¢ and
the superconducting order parameter oscillates in real space
such as cos(q-r). Essentially similar effect has been pre-
dicted and observed in ferromagnet-superconductor (FS) and
superconductor-ferromagnet-superconductor (SFS) proxim-
ity structures.>”” In metallic SFS junctions, the proximity ef-
fect in a ferromagnet causes unusual Josephson coupling. An
SES junction undergoes a transition from O state to 7 state as
temperatures or length of a ferromagnet change because the
pairing function in a ferromagnet changes its sign almost
periodically as a function of spatial coordinate. In metallic
FS junctions, the exchange potential V., suppresses the An-
dreev reflection.® Therefore the conductance of an FS junc-
tion decreases with the increase in V,, and vanishes at V,,
=u, where u is the Fermi energy in the absence of exchange
potential. For V., > u, a ferromagnet becomes half metallic
and the wusual proximity effect is impossible in a
ferromagnet.”!3 This picture is valid when the minority spin
conduction band has its bottom. Thus the above picture
would be changed for the loose-bottomed band structure in
graphene.

Graphene is a novel material attracting much attention
recently. Carbon atoms on graphene are separated into two
sublattices (A and B) due to its honeycomb lattice structure.
In undoped graphene, the Fermi level lies on the conical
point of the linear dispersion relation. In slightly doped
graphene, two independent valleys appear on the Fermi sur-
face. A considerable number of theoretical studies are made
on transport properties of graphene because electronic struc-
tures can be described by the massless Dirac Hamiltonian.'#
The superconducting graphene junction was first discussed
by Beenakker.!> When the Fermi level in normal graphene is
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smaller than the pair potential of superconducting graphene,
the Andreev reflection has the specular reflection property
instead of the usual retroreflection. As a result, an electron-
hole pair in the normal segment loses its retroreflection prop-
erty even in the presence of time-reversal symmetry. Thus an
unusual electronic transport is expected in superconducting
graphene junctions.'®

In this paper, we discuss electric current in FS and SFS
junctions on graphene. When the exchange potential is much
larger than the Fermi energy (i.e., V> w) in a ferromagnetic
segment, the Andreev reflection always has the specular re-
flection property. As a consequence, the conductance spectra
of FS junction become insensitive to V,,. In addition, very
small shot noise is expected because the Andreev reflection
probability is unity at the zero bias irrespective of V. In
SES junctions, the amplitude of Josephson current increases
with increasing V.. In all cases, the exchange potential as-
sists electron transport in graphene, in contrast to usual FS
and SFS junctions.

II. CONDUCTANCE IN FS JUNCTIONS

Let us consider a graphene sheet on an insulator-
superconductor junction as shown in Fig. 1(a), where the
width of graphene sheet is W. There are several ways to
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FIG. 1. (Color online) Schematic figures of FS and SFS junc-
tions on graphene. The width of graphene is W.
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introduce the exchange potential onto a ferromagnetic seg-
ment of graphene. Several theories suggested intrinsic ferro-
magnetic correlations.!”!3 It is also possible to substitute the
insulator by a ferromagnetic insulator such as EuO.!° A
rough estimation?® indicates the exchange splitting on
graphene would be 5 meV. Although the Zeeman splitting
due to external magnetic field is not large (1 meV per
20 T),2° magnetic field in the y direction can tune the ex-
change splitting. In addition to these, a recent paper sug-
gested the spin field-effect transistor using graphene?! and
the spin injection into graphene.?> Thus introducing spin im-
balance on graphene would be possible by combination of
conventional technique or novel ideas of spin control. A
junction on graphene is described by the Dirac-
Bogoliubov—de Gennes equation'”

he — V.0 sA(x) 6,
0= ‘ o " lem=Ed ), (1)
sA(x) o0y - ho— SVexaA-O
ho=—ifvpV - &= [+ V(x)16, (2)
Vi) = 0 x <0 3)
* = - UO x>0 ’
A(x) = Ae“O(x), (4)

oeft] o] o]
U Up Up

where V=(d,,d,), vr is a constant velocity, @(x) is the step
function, &y is the 2 X2 unit matrix, o; for j=1-3 is the
Pauli matrix representing sublattice space, and u and V,, are
the chemical potential and the exchange potential of a ferro-
magnetic segment, respectively. Here and in what follows,
we take the unit of A=kgz=1, where ky is the Boltzmann
constant. The spin degree of freedom of a quasiparticle is
represented by s= = 1; s=1 indicates a subspace of spin-up
electron and spin-down hole, and s=-1 indicates a subspace

of spin-down electron and spin-up hole. In this paper, e

indicates a 2 X 2 matrix in sublattice space and - -+ means a
4 X4 matrix in Nambu X sublattice space. The amplitude of
the pair potential in a superconducting segment is A and we
denote its zero temperature value by A,. We assume that the
superconducting segment is heavily doped so that the prox-
imity effect induces superconductivity on graphene'® (i.e.,
Uy>Ay). In superconducting segment, the wave functions
are given by

vug
X 0 iy
\I}S,e v= _/_ e P()qu(y) s (6)
V2] Voo
Vo
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where (= VE?~Aj, ¢ is the phase of superconductor, foy) is
the wave function in the y direction with a momentum g¢,
e(h) in the subscript of W represents electron (hole) branch,
and v=1 or —1 indicates moving direction of a quasiparticle
in the x direction. In a ferromagnetic segment, the wave
function is described by

—ival2

e
Wpperm | | (13)
s,e V: = e ¢ £
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0
0
1 0 ivppx
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The wave functions in the two segments are connected at the
junction interface,
\I,F,s,e,-f + ree\PF,s,e,— + rhe\I,F,s,h,— = tee\PS,e,+ + theq,S,ll,+'
(17)
Here r,, and r, are, respectively, the normal and Andreev

reflection coefficients at the interface with a ferromagnet.
They have a form
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FIG. 2. Differential conductance of versus bias voltage. We
choose V=0 in (a) and ©=0 in (b).

T = COS ae /X, (18)
. . [a+b) . f(a-b
7, =i| cos Bsin + i sin B sin X,
2 2
(19)
- . a+b
X=cos B cos( ) +isin B cos( ) (20)

The differential conductance of junction at zero temperature
follows from the Blonder-Tinkham-Klapwijk?® formula,

2¢?
GFS = 7 E 2 [1 - |ree|2 + |rhe|2]s,E:eV’ (21)

s=*1 g¢q

|+ eV + sV, |W

N /2
Eejf dacosa, N,= , (22)
q

—m/2 TUF

where N, is the number of propagating channels of an inci-
dent electron. The number of propagating channels of outgo-
ing hole is given by

CmpteVasV W

(23)

s TV
As is seen from the above expression, the conductance is
expected to have some characteristic structure at such values
of eV, which result in N;=0 or M,=0.
In Fig. 2, we show the conductance of FS junction as a
function of bias voltages. The vertical axis is normalized by
a constant value independent of p and V,,

2e W Up
Gy= e O—AO. (24)
We first summarize the conductance of NS junction'’ in Fig.
2(a), where V,,=0. The conductance for u/Ay=0.5 and that
for w/Ay=1, respectively, have bending structure at eV
=0.5A, and eV=A because M;=0 holds at these points. The
amplitude of conductance increases with the increase in w
for u> A, because the number of propagating channels ba-
sically increases with u. The conductance spectra are close
to those in usual NS junctions with highly transparent inter-
face. In graphene NS junctions, however, the Andreev reflec-

tion probability in the subgap region is always smaller than

PHYSICAL REVIEW B 78, 014514 (2008)

Ferromagnetic segment u=0

electron-down
’

hole-down

Superconductor

FIG. 3. (Color online) (a) The dispersion relation of a quasipar-
ticle at =0 in ferromagnetic segment. (b) Incident angle of an
electron a and reflection angle of a hole b.

unity. Second, we focus on the conductance in the limit of
p—0 as shown in Fig. 2(b). In usual metallic ferromagnets,
n<<V,, describes a half metal within the single-band picture.
In a FS junction on a graphene, electronic structures are me-
tallic for both spin directions because the conduction band is
not limited from the bottom. When the Fermi energy of a
spin-up electron lies on the upper cone, that of a spin-down
electron is in the lower cone as shown in Fig. 3(a). The
similar argument is also given by Ref. 24. The line shape of
conductance spectra in Fig. 2(b) can be understood by the
following argument. As shown in Fig. 3(b), a in Eq. (15) and
b in Eq. (16) represent, respectively, an incident angle of an
electron and a reflection angle of a hole. At u=0, the relation
a=>b holds for all E and V.. As a result, the integral with
respect to a in Egs. (21) and (22) becomes independent of
Vex- Only Ny and M, [Egs. (22) and (23)] depend on V,,. The
differences in line shapes of conductance in Fig. 2(b) mainly
come from the dependence of N; and M, on eV. At V_,
=0.5A, N,_; increases with increasing e¢V. On the other
hand, N__; first decreases to zero at eV=V,, then increases
with increasing eV. Thus the conductance spectra show
bending structure at eV=V,,. For V., > A,, the line shape of
conductance is independent of V., and the amplitude is sim-
ply proportional to V.. It should be noted that the Andreev
reflection probability is unity at eV=0 for V> A,. There-
fore, according to Ref. 8, very small shot noise is expected
near the zero bias. This feature remains unchanged as far as
a relation uw<<V,, being satisfied.

Here we briefly discuss the specular Andreev reflection in
FS junction. The velocity of right moving incident electron is
vp(cos a,sin a). On the other hand, the velocity of left mov-
ing hole is vp(—cos b,sin b). Since a=b at u=0, the velocity
component in the x direction changes its sign in the Andreev
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FIG. 4. Conductance spectra in FS junctions for £=0.5A in (a)
and u=2A, in (b).

reflection, whereas that in the y direction remains unchanged.
Thus the Andreev reflection is always specular in a FS junc-
tion on graphene for u<<V,,.

At u=0.5A,, the conductance spectra show more variety
as seen in Fig. 4(a). At V,/A;=0.5, the conductance at zero
bias has very small value because the conditions M,_;=0 and
N,__;=0 are satisfied at eV=0. The conductance increases
with increasing eV near zero bias because the bias voltage
increases the number of propagating channels. For V.,/A,
=1, the conductance has a bending structure at eV=pu be-
cause N,__; becomes zero there. For V  =2A,, the line shape
of conductance is close to that of V., >A, in Fig. 2(b). In
Fig. 4(b), we also show the conductance for u=24,. At
V=0.5A, the conductance spectra are similar to those in
NS junction in Fig. 2(a). The subgap conductance decreases
with increase in V, as shown in Fig. 4(b) for the cases Vi,
=A, and V=2A,. This is because the number of propagat-
ing channels decreases with increasing V. For V_ > u, the
conductance spectra are close to those in Fig. 2(b).

In realistic junctions on graphene, the amplitude of pair
potential A, would be expected to be on the order of 1 K.
The constant slope of the dispersion relation #v is estimated
to be 7 X 10~ m K.'* Thus the coherence length &, becomes
on the order of 1 um. The typical amplitude of the conduc-
tance is (e?/h)N, with Ny=W|u+eV+ = V,,|/ (hvy) being the
number of propagating channels. When we choose W is
about 1 um, the conductance becomes the quantum conduc-
tance e*/h for |u+eV+ *V,|=1 meV.

III. JOSEPHSON EFFECT IN SFS JUNCTIONS

Let us consider SFS junction as shown in Fig. 1(b), where
we add a superconductor on the left-hand side of FS junc-
tion. We assume that the length of an insulator L is large
enough so that the electric current through the insulator com-
pletely vanishes. Then the superconductors are electrically
coupled only through the graphene sheet. The potentials of
junctions in Egs. (1) and (2) are replaced by

_UO x=0
V(x)=10 0<x<L , (25)
-Uy x=L
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AL x=0
A(x)=40 0<x<L . (26)
AR x =L

The continuity equation of electron density implies

an(r)+V-jr) =0, (27)
. 4% OA- 6 i (s)
Jjr)= 2T XTrf| GY(rrw,) |,
2 7, 0 &

(28)

where G“ is the Matsubara-Green function of SFS junction
at r=(x,y) with 0=x=L and w,=(2n+1)7T is the Matsub-
ara frequency with n and T being an integer number and a
temperature, respectively. The trace is carried out over
Nambu and sublattice spaces. The Josephson current in SFS
junction is obtained by integrating Eq. (28) with respect to y.
In direct-current Josephson effect, the Josephson current
does not depend on x. Thus we choose x=0 in what follows.
Without losing generality, we obtain the total Josephson cur-
rent in SES junctions,

e A
= % 2 E TE E[rhe - reh]s’ (29)

s=x1 ¢ wy, n
T3 .
where Qn=\s’wn+A2. For propagating channels, the summa-
tion is replaced by

N,
23

i |+ sV, ] W
dacosa, Nj=—""".
—/2 TUF

(30)

The current expression coincides with Furusaki-Tsukada
formula.?>? In Eq. (29), r,;, and r,, are the Andreev reflec-
tion coefficients, which should be calculated in an SFS junc-
tion. From appropriate boundary condition at x=0 and L,
they become

[rhe - reh]s:l = AQnDE» (31)
- Awi+A2R
E=01 0 20 4p2° (32)
Pw, + ;A0 + AR
P=A+C%, Q=(QRA+C?), (33)
R=(A+B+D cos ¢)/2, (34)

with ¢ being the phase difference between the two supercon-
ductors, and

A =cos(p,L)cos a cos(p,L)cos b —sin(p,L)sin(p,L),
(35)

B =sin(p,L)sin a sin(p,L)sin b, (36)

C=cos(p,L)cos a sin(p,L) + cos(p,L)cos b sin(p,L),
(37)

014514-4



ELECTRON TRANSPORT IN A FERROMAGNET-...

30
20

(b)p=104,

0 1 1 1 1
00 0.2 04 06 08 1.0 00 02 04 06 08 1.0
¢ [n] ¢ [n]

FIG. 5. Current-phase relation of SFS junction at 7=0 for u
=0 in (a) and u=104A, in (b).

D =cos acos b. (38)

Here a, b, p,, and p, are given by Egs. (15) and (16) with
E—0. The results for s=—1 are obtained by V., ,— -V, in
above results. For short junctions L<&,=v;/A,, we obtain

sin @D
J=622/ L2

s=x1 ¢ VQ? - 4PR? w, 2T
®’A — RA? w_
—— tanh| — | |, (39)
w_ 2T

where w2 =A%(Q+\Q?-4PR?)/2P. At V=0, we recover
the previous results for SNS junction.?’

In Fig. 5, we show current-phase relation (CPR) of SFS
junction at T=0 for u=0 in Fig. 5(a) and u=104, in Fig.
5(b), where we choose L=0.2&,. The vertical axis is normal-
ized by a constant value of Jy=eAyW/ &, which is indepen-
dent of u and V,,, and is about 0.01 uA for W=1 um and
Ag=1 K. We first pay attention to the CPR in SNS
junction,?” which is represented by a broken line in Fig. 5(b).
In SNS junctions, the Josephson current has a CPR, which
slightly deviates from the sinusoidal relation for w>A,. On
the other hand in SFS junction, the CPR shows complicated
structures depending on V., as shown in Fig. 5(a). At V,
=A,, the Josephson current mainly flows through evanescent
channels and CPR is similar to that in the short diffusive
SNS junction.”” At V,,=5A,, the contribution of propagating
channel dominates the Josephson current, and the CPR sud-
denly deviates from a linear relation around the critical phase
difference ¢=0.357. In the limit of ©=0, the Josephson cur-
rent at 7=0 becomes

|, = |o|

J=eA )T e oSl
el cos(¢/2) EonbscS cos(p,L)

q @y

X[(1 =2¢?) + sgn{cos®(p,L) — sin*(¢/2)}],  (40)

with
L o - 27 AN
by=\1-T, sin*(¢/2), (41)
—_—
Cs= V1- T, COSZ(peL), (42)
2
Cos™ a
n= B (43)
Ccos

a cos*(p,L) + sin*(p,L)’
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FIG. 6. Critical Josephson current versus exchange potential at
T=0 and L=0.2&,.

ws = AT, [b, cos(p,L) + ¢ sin(@/2)].  (44)

The energies of the bound states are given by *w.. For ¢
>0 and p,L=1, w_ changes its sign at ¢, satisfying
cos?(p,L)—sin’*(¢./2)=0. Namely, the two Andreev bound
states *w_ go across the Fermi level at ¢.. As a result, the
Josephson current changes its sign. The transition is not so
sharp because ¢, depends on an incident angle of a quasipar-
ticle. This situation is similar to the O— 7 transition in diffu-
sive  superconductor/ferromagnet/constriction/ferromagnet/
superconductor junction.” Although SFS junctions on
graphene is free from impurity scatterings, it shows a char-
acteristic property of diffusive junctions. The Josephson cur-
rent are always negative and positive for all ¢>0 at V,
=10A, and 20A,, respectively. This tendency can be also
observed even in the presence of u as shown in Fig. 5(b)
with u=10A,.

The Josephson current oscillates as a function of V, as
shown in Fig. 6. At u=0 in Fig. 6(a), the amplitude of criti-
cal current totally increases with the increase in V,, because
the number of propagating channels increases with increas-
ing V. At the same time, the critical current shows oscilla-
tions, which indicate the O— 7 transition. Strictly speaking,
the oscillations are not identical to the O—r transition in
usual SFS junctions because the CPR deviates far from the
sinusoidal relation. In Fig. 6, we first calculate the CPR for
fixed V,, in 0 < @< then determine the critical current. If
the critical current flows to the +x direction, we assign such
junction as O junction in Fig. 6. In the same way, if the
critical current flows to the —x direction, we label such junc-
tion as 7 junction. At the 0— 7 transition points, the critical
current still have a large value because of the higher
harmonics.?® At V,,=0, the critical current does not become
zero because the contribution of the evanescent channels
makes the Josephson current a finite value.

For u=20A,, as shown in Fig. 6(b), the amplitude of the
critical current first decreases with increasing V., then in-
creases. At V,,=u, the critical current becomes a small value
because the number of propagating channels becomes zero.
The Josephson coupling through the evanescent channels
gives a finite critical current there. We analytically confirm
that the junction is always in the O state in the limit of V,,
=0.

In Fig. 7(a), we show the critical current at u=0 and T
=0, where we choose L=0.1&, and 0.5&,. With Fig. 6(a), we
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FIG. 7. Critical Josephson current versus exchange potential at
T=0 for L=0.2&, and 0.5, in (a). Critical Josephson current is
shown for several choices of temperature for L=0.2&, in (b).

find that the period of oscillations becomes shorter for larger
L. At the same time, the amplitude of the critical current
becomes smaller for larger L. Figure 7(b) shows the critical
current for L=0.2§, for several choices of temperatures:
T/T.=0.1, 0.5, and 0.8 from top to bottom. The 0— 7 transi-
tion points remain almost unchanged at finite temperatures.
Thus 0— transition by changing temperature is absent in
SES junctions on graphene, as well as in usual SFS junction
in the clean limit.”
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IV. CONCLUSION

We have studied electron transport in ferromagnet-
superconductor  (FS)  junctions and superconductor-
ferromagnet-superconductor (SFS) on graphene. Cooper
pairs can carry electric current even when exchange potential
(Vo) is much larger than the Fermi energy (w) in a ferro-
magnet because electric structures of graphene lose a bottom.
The exchange potential rather enhances the electron transport
on graphene. The Andreev reflection is always specular re-
flective for u=0. As a consequence, the line shape of con-
ductance spectra in FS junctions is independent of V,, for
sufficiently large V,,. In addition, the Andreev reflection
probability at the zero bias is unity, which leads to small shot
noise near the zero bias. In SFS junction, the Josephson cur-
rent shows complicated current-phase relationships. The SFS
junction exhibits the O—r transition behavior as changing
Vex-
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